刷题首页
题库
高中数学
题干
已知椭圆
C
的中心为坐标原点,焦点在坐标轴上,且经过点
M
(4
,
1),
N
(2
,
2).
(1)求椭圆
C
的方程;
(2)若斜率为1的直线与椭圆
C
交于不同的两点,且点
M
到直线
l
的距离为
,求直线
l
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 08:37:46
答案(点此获取答案解析)
同类题1
已知椭圆
过点
,焦距长
,过点
的直线
交椭圆
于
,
两点.
(1)求椭圆
的方程;
(2)已知点
,求证:
为定值.
同类题2
已知椭圆
上的左、右顶点分别为
,
,
为左焦点,且
,又椭圆
过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
和
分别在椭圆
和圆
上(点
除外),设直线
,
的斜率分别为
,
,若
,
,
三点共线,求
的值.
同类题3
已知椭圆
的右顶点为
,上顶点为
,右焦点为
.连接
并延长与椭圆
相交于点
,且
(1)求椭圆
的方程;
(2)设经过点
的直线
与椭圆
相交于不同的两点
,直线
分别与直线
相交于点
,点
.若
的面积是
的面积的2倍,求直线
的方程.
同类题4
已知椭圆
的左右焦点坐标为
,且椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)设点
是椭圆
上位于第一象限内的动点,
分别为椭圆
的左顶点和下顶点,直线
与
轴交于点
,直线
与
轴交于点
,求四边形
的面积.
同类题5
已知
为椭圆
C
:
1(
a
>
b
>0)的一个焦点,且点
在椭圆
C
上.
(1)求椭圆
C
的方程;
(2)若点
P
(
m
,0)为椭圆
C
的长轴上一动点,过
P
且斜率为
的直线
l
交椭圆
C
于
A
,
B
两点,求证|
PA
|
2
+|
PB
|
2
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据直线与椭圆的位置关系求参数或范围