刷题宝
  • 刷题首页
题库 高中数学

题干

古希腊数学家波罗尼斯(约公元前年)的著作《圆锥曲线论》是古代世界光辉的科学成果.他证明过这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将这个园称为“阿波罗尼斯圆”.在平面直角坐标系中,设,,动点满足,则动点的轨迹围成的面积为  
A.B.C.D.
上一题 下一题 0.99难度 单选题 更新时间:2020-01-13 05:22:39

答案(点此获取答案解析)

同类题1

已知椭圆的方程为,其离心率,且短轴的个端点与两焦点组成的三角形面积为,过椭圆上的点作轴的垂线,垂足为,点满足,设点的轨迹为曲线.
(1)求曲线的方程;
(2)若直线与曲线相切,且交椭圆于两点, ,记的面积为, 的面积为,求的最大值 .

同类题2

已知两点A(-,0),B(,0),动点P在y轴上的投影是Q,且.
(1)求动点P的轨迹C的方程;
(2)过F(1,0)作互相垂直的两条直线交轨迹C于点G,H,M,N,且E1,E2分别是GH,MN的中点.求证:直线E1E2恒过定点.

同类题3

已知定点,动点满足行列式,求线段的中点的轨迹方程

同类题4

已知点的坐标分别是,. 直线相交于的,且它们的斜率之和是2,则点的轨迹方程为

同类题5

在直角坐标系中,已知,,若直线上存在点,使得,则实数的取值范围是______.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 曲线与方程
  • 轨迹问题
  • 求平面轨迹方程
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)