刷题首页
题库
高中数学
题干
求以椭圆9
x
2
+5
y
2
=45的焦点为焦点,且经过点
M
(2,
)的椭圆的标准方程
.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-13 09:50:03
答案(点此获取答案解析)
同类题1
已知椭圆
过点
,焦距长
.
(I)求椭圆
的标准方程;
(II)设不垂直于坐标轴的直线
与椭圆
交于不同的两点
、
,点
.设
为坐标原点,且
.证明:动直线
经过定点.
同类题2
(题文)(题文)已知点
在椭圆
上,椭圆离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过椭圆
右焦点
的直线
与椭圆交于两点
、
,在
轴上是否存在点
,使得
为定值?若存在,求出点
的坐标;若不存在,请说明理由.
同类题3
已知椭圆
C
的两个焦点为
F
1
(-1,0),
F
2
(1,0),且经过点
E
.
(1)求椭圆
C
的标准方程;
(2)过点
F
1
的直线
l
与椭圆
C
交于
A
,
B
两点(点
A
位于
x
轴上方),若
,且2≤
λ
<3,求直线
l
的斜率
k
的取值范围.
同类题4
已知椭圆
:
,右焦点
,点
在椭圆上.
(1)求椭圆的方程;
(2)设
为椭圆
上一点,过焦点
的弦分别为
,设
,
,若
,求
的值.
同类题5
在平面直角坐标系
中,已知椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)设点
,点
在
轴上,过点
的直线交椭圆
交于
,
两点.
①若直线
的斜率为
,且
,求点
的坐标;
②设直线
,
,
的斜率分别为
,
,
,是否存在定点
,使得
恒成立?若存在,求出
点坐标;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程