刷题首页
题库
高中数学
题干
已知点
在椭圆
上,且椭圆的离心率为
.
(1)求椭圆
的方程;
(2)若
为椭圆
的右顶点,点
是椭圆
上不同的两点(均异于
)且满足直线
与
斜率之积为
.试判断直线
是否过定点,若是,求出定点坐标,若不是,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-27 08:39:42
答案(点此获取答案解析)
同类题1
如图,椭圆
的离心率为
,点
是椭圆内一点,过点
作两条斜率存在且互相垂直的动直线
,设
与椭圆
相交于点
,
与椭圆
相交于点
.当点
恰好为线段
的中点时,
.
(1)求椭圆
的方程;
(2)求
的最小值.
同类题2
已知动直线
与焦点坐标为
,离心率为
的曲线
相交于
两点(
为曲线
的坐标原点),且
.
(1)求曲线
的标准方程;
(2)证明:
和
都为定值.
同类题3
已知椭圆
:
的离心率为
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,且以线段
为直径的圆过椭圆的右顶点
,求证:直线
恒过
轴上一定点.
同类题4
已知椭圆
E
:
(
a
>
b
>0)的左,右焦点分别为
F
1
,
F
2
,且
F
1
,
F
2
与短轴的一个端点
Q
构成一个等腰直角三角形,点
P
(
)在椭圆
E
上,过点
F
2
作互相垂直且与
x
轴不重合的两直线
AB
,
CD
分别交椭圆
E
于
A
,
B
,
C
,
D
且
M
,
N
分别是弦
AB
,
CD
的中点
(1)求椭圆的方程
(2)求证:直线
MN
过定点
R
(
,0)
(3)求△
MNF
2
面积的最大值.
同类题5
若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )
A.
B.
C.
或
D.以上都不对
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题