刷题首页
题库
高中数学
题干
如图,椭圆
G
的中心在坐标原点,其中一个焦点为圆
F
:
x
2
+
y
2
﹣2
x
=0的圆心,右顶点是圆
F
与
x
轴的一个交点.已知椭圆
G
与直线
l
:
x
﹣
my
﹣1=0相交于
A
、
B
两点.
(
I
)求椭圆的方程;
(Ⅱ)求△
AOB
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-11 10:13:00
答案(点此获取答案解析)
同类题1
设点
、
的坐标分别为
和
,动点
P
满足
,设动点
P
的轨迹为
,以动点
P
到点
距离的最大值为长轴,以点
、
为左、右焦点的椭圆为
,则曲线
和曲线
的交点到
轴的距离为_________.
同类题2
已知椭圆
的离心率为
,右焦点为
,直线
l
经过点
F
,且与椭圆交于
A
,
B
两点,
O
为坐标原点.
(1)求椭圆的标准方程;
(2)当直线
l
绕点
F
转动时,试问:在
x
轴上是否存在定点
M
,使得
为常数?若存在,求出定点
M
的坐标;若不存在,请说明理由.
同类题3
设椭圆
,定义椭圆
C
的“相关圆”
E
为:
.若抛物线
的焦点与椭圆
C
的右焦点重合,且椭圆
C
的短轴长与焦距相等.
(1)求椭圆
C
及其“相关圆”
E
的方程;
(2)过“相关圆”
E
上任意一点
P
作其切线
l
,若
l
与椭圆
交于
A
,
B
两点,求证:
为定值(
为坐标原点);
(3)在(2)的条件下,求
面积的取值范围.
同类题4
已知椭圆
,
,
为椭圆的两个焦点,
为椭圆上任意一点,且
,
构成等差数列,过椭圆焦点垂直于长轴的弦长为3.
(1)求椭圆
的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆
恒有两个交点
,且
,求出该圆的方程.
同类题5
已知椭圆
的中心在坐标原点,离心率等于
,该椭圆的一个长轴端点恰好是抛物线
的焦点.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
的两个交点记为
、
,其中点
在第一象限,点
、
是椭圆上位于直线
两侧的动点.当
、
运动时,满足
,试问直线
的斜率是否为定值?若是,求出该定值;若不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中三角形(四边形)的面积