刷题首页
题库
高中数学
题干
已知抛物线
:
准线为
,焦点为
,点
是抛物线
上位于第一象限的动点,直线
(
为坐标原点)交
于
点,直线
交抛物线
于
、
两点,
为线段
中点.
(1)若
,求直线
的方程;
(2)试问直线
的斜率是否为定值,若是,求出该值;若不是,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 04:07:23
答案(点此获取答案解析)
同类题1
在直角坐标系
中,直线
与抛物线
相交于
,
两点.
(1)证明:
为定值.
(2)若点
的坐标为
,且
,证明:
.
同类题2
已知动圆过点
,且在
轴上截得的弦长为4.
(1)求动圆圆心
的轨迹方程;
(2)过点
的直线
与曲线
交于点
,
,与
轴交于点
,设
,
,求证:
是定值.
同类题3
过抛物线
的焦点
的直线交抛物线于不同的两点
,则
的值为( )
A.2
B.1
C.
D.4
同类题4
如下图,过抛物线
焦点的直线依次交抛物线与圆
于
A
,
B
,
C
,
D
,则
= .
同类题5
过
轴上动点
引抛物线
的两条切线
,
,其中
,
为切线.
(1)若切线
,
的斜率分别为
和
,求证:
为定值,并求出定值;
(2)当
最小时,求
的值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
抛物线中的定点、定值
抛物线中的定值问题