刷题首页
题库
高中数学
题干
已知椭圆
:
的左焦点为
,过点
的直线
:
和椭圆
交于两点
和
,和
轴交于点
.若
,则椭圆
的离心率
( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-02-13 04:06:43
答案(点此获取答案解析)
同类题1
已知
F
1
、
F
2
分别是椭圆
C
:
的左焦点和右焦点,
O
是坐标系原点,且椭圆
C
的焦距为6,过
F
1
的弦
AB
两端点
A
、
B
与
F
2
所成△
ABF
2
的周长是
.
(Ⅰ)求椭圆
C
的标准方程;
(Ⅱ)已知点
P
(
x
1
,
y
1
),
Q
(
x
2
,
y
2
)是椭圆
C
上不同的两点,线段
PQ
的中点为
M
(2,1),求直线
PQ
的方程.
同类题2
已知椭圆
经过点
,
是
的一个焦点,过
点的动直线
交椭圆于
两点.
(1)求椭圆
的方程;
(2)是否存在定点
(异于点
),对任意的动直线
(斜率存在)都有
,若存在求出点
的坐标,若不存在,请说明理由.
同类题3
求下列各式的相反数与绝对值.
2.5,﹣
7
,﹣
π
2
,
3
-2,0.
同类题4
已知椭圆
焦距为
(1)求椭圆的标准方程;
(2)求椭圆中斜率为
的平行弦的中点的轨迹方程.
同类题5
椭圆
:
的左焦点为
且离心率为
,
为椭圆
上任意一点,
的取值范围为
,
.
(1)求椭圆
的方程;
(2)如图,设圆
是圆心在椭圆
上且半径为
的动圆,过原点
作圆
的两条切线,分别交椭圆于
,
两点.是否存在
使得直线
与直线
的斜率之积为定值?若存在,求出
的值;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求椭圆的离心率或离心率的取值范围