刷题首页
题库
高中数学
题干
已知椭圆
过圆
的圆心
,且右焦点与抛物线
的焦点重合.
(1)求椭圆
的方程;
(2)过点
作直线
交椭圆
于
,
两点,若
,求直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-13 04:44:34
答案(点此获取答案解析)
同类题1
已知椭圆
的左、右焦点分别为
、
,由椭圆短轴的一个端点与两焦点构成一个等边三角形,它的面积为
.
(1)求椭圆
的方程;
(2)已知动点
在椭圆
上,点
,直线
交
轴于点
,点
为点
关于
轴对称点,直线
交
轴于点
,若在
轴上存点
,使得
,求点
的坐标.
同类题2
在平面直角坐标系
中,已知椭圆
的焦距为4,且过点
.
(1)求椭圆
的方程
(2)设椭圆
的上顶点为
,右焦点为
,直线
与椭圆交于
、
两点,问是否存在直线
,使得
为
的垂心,若存在,求出直线
的方程;若不存在,说明理由.
同类题3
已知椭圆
,右焦点
的坐标为
,且点
在椭圆
上.
(1)求椭圆
的方程及离心率;
(2)过点
的直线交椭圆于
两点(直线不与
轴垂直),已知点
与点
关于
轴对称,证明:直线
恒过定点,并求出此定点坐标.
同类题4
已知椭圆
:
过点
,且离心率
.
(1)求椭圆
的方程;
(2)已知斜率为
的直线
与椭圆
交于两个不同点
,点
的坐标为
,设直线
与
的倾斜角分别为
,证明:
.
同类题5
已知椭圆
E
的对称轴为坐标轴,焦点
F
1
,
F
2
在
y
轴,离心率为
.
A
是椭圆
E
与
x
轴负半轴的交点,且|
AF
1
|+|
AF
2
|=4.
(1)求曲线
E
的方程;
(2)过
A
作两条直线
L
1
,
L
2
,且
L
1
,
L
2
与曲线
E
的异于
A
的交点分别为
B
,
C
.设
L
1
,
L
2
的斜率分别是
k
1
,
k
2
,若
k
1
k
2
=1,求证:由
B
、
C
确定的直线
l
经过定点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程