刷题首页
题库
高中数学
题干
已知椭圆与抛物线
有一个相同的焦点,且该椭圆的离心率为
,
(Ⅰ)求该椭圆的标准方程:
(Ⅱ)求过点
的直线与该椭圆交于
A
,
B
两点,
O
为坐标原点,若
,求
的面积.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-13 03:16:39
答案(点此获取答案解析)
同类题1
已知椭圆
上有一个顶点到两个焦点之间的距离分别为
,
.
(1)求椭圆的方程;
(2)如果直线
与椭圆相交于
,若
,证明直线
与直线
的交点
必在一条确定的双曲线上;
(3)过点
作直线
(与
轴不垂直)与椭圆交于
两点,与
轴交于点
,若
,
,证明:
为定值.
同类题2
设椭圆
的左、右顶点分别为
,
,且左、右焦点与短轴的一个端点是等边三角形的三个顶点,点
在椭圆上,过点
的直线交椭圆
于
轴上方的点
,交直线
于点
.直线
与椭圆
的另一交点为
,直线
与直线
交于点
.
(1)求椭圆
的标准方程;
(2)若
,试求直线
的方程;
(3)如果
,试求
的取值范围.
同类题3
椭圆
的两个焦点为
,点P在椭圆C 上,且
,
,
.
(1)求椭圆C的方程;
(2)若直线L过点
交椭圆于A、B两点,且点M为线段AB的中点,求直线L的一般方程.
同类题4
与双曲线
共焦点,且过点
的椭圆方程为________.
同类题5
椭圆
的一个焦点
F
与抛物线
y
2
=4
x
的焦点重合,且截抛物线的准线所得弦长为
,倾斜角为45°的直线
l
过点
F
.
(Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为
F
1
,问抛物线
y
2
=4
x
上是否存在一点
M
,使得
M
与
F
1
关于直线
l
对称,若存在,求出点
M
的坐标,若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程