刷题首页
题库
高中数学
题干
已知椭圆
的一个焦点为
,离心率为
,
为椭圆
的左顶点,
,
为椭圆
上异于
的两个动点,直线
,
与直线
分别交于
,
两点.
(1)求椭圆
的方程;
(2)若
与
的面积之比为
,求
的坐标;
(3)设直线与
轴交于点
,若
,
,
三点共线,判断
与
的大小关系,并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-14 11:13:01
答案(点此获取答案解析)
同类题1
已知椭圆
的左右焦点为
,
是椭圆上半部分的动点,连接
和长轴的左右两个端点所得两直线交
正半轴于
两点(点
在
的上方或重合).
(1)当
面积
最大时,求椭圆的方程;
(2)当
时,在
轴上是否存在点
使得
为定值,若存在,求
点的坐标,若不存在,说明理由.
同类题2
已知
是椭圆
:
的右焦点,
是坐标原点.过
且与
轴垂直的直线交椭圆
于
、
两点,若
(Ⅰ)求
的值
(Ⅱ)若
是以
为圆心以
为半径的圆上动点,过点
且与该圆相切的直线
交椭圆
于
、
不同的两点,求
面积的最大值
同类题3
已知
分别是双曲线
的左、右焦点,若点
关于直线
的对称点恰好落在以
为圆心,
为半径的圆上,则双曲线
的离心率为 ( )
A.
B.
C.
D.
同类题4
已知椭圆
的一个顶点为
,半焦距为
,离心率
,又直线
交椭圆于
,
两点,且
为
中点.
(1)求椭圆
的标准方程;
(2)若
,求弦
的长;
(3)若点
恰好平分弦
,求实数
;
(4)若满足
,求实数
的取值范围并求
的值;
(5)设圆
与椭圆
相交于点
与点
,求
的最小值,并求此时圆
的方程;
(6)若直线
是圆
的切线,证明
的大小为定值.
同类题5
在平面直角坐标系
中,点
,点
在
轴上,点
在
轴非负半轴上,点
满足:
(1)当点
在
轴上移动时,求动点
的轨迹C的方程;
(2)设
为曲线C上一点,直线
过点
且与曲线C在点
处的切线垂直,
与C的另一个交点为
,若以线段
为直径的圆经过原点,求直线
的方程.
相关知识点
平面解析几何
圆锥曲线