刷题首页
题库
高中数学
题干
已知椭圆
:
的右焦点为
,过点
的直线交椭圆
于
,
两点,若
的中点坐标为
,则椭圆
的方程为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-02-21 12:38:48
答案(点此获取答案解析)
同类题1
已知椭圆的两个焦点分别为
,离心率
.
(1)求椭圆的方程.
(2)一条不与坐标轴平行的直线
与椭圆交于不同的两点
,且线段
的中点的横坐标为
,求直线
的斜率的取值范围.
同类题2
如图,在平面直角坐标系
中,椭圆
:
的离心率为
,焦点到相应准线的距离为
,
,
分别为椭圆的左顶点和下顶点,
为椭圆
上位于第一象限内的一点,
交
轴于点
,
交
轴于点
.
(1)求椭圆
的标准方程;
(2)若
,求
的值;
(3)求证:四边形
的面积为定值.
同类题3
已知椭圆
的焦距为
,且长轴与短轴的比为
.
(1)求椭圆的标准方程;
(2)椭圆
的上、下顶点分别为
,点
是椭圆上异于
的任意一点,
轴于点
,
,直线
与直线
交于点
,点
为线段
的中点,点
为坐标原点,求证:
恒为定值,并求出该定值.
同类题4
已知椭圆
(
)的左、右焦点分别为
、
,设点
,在
中,
,周长为
.
(1)求椭圆
的方程;
(2)设不经过点
的直线
与椭圆
相交于
、
两点,若直线
与
的斜率之和为
,求证:直线
过定点,并求出该定点的坐标;
(3)记第(2)问所求的定点为
,点
为椭圆
上的一个动点,试根据
面积
的不同取值范围,讨论
存在的个数,并说明理由.
同类题5
已知椭圆
:
的左、右焦点分别为
,
,过
的直线
与椭圆
交于
两点,
的周长为
.
(1)求椭圆
的方程;
(2)若过点
作
轴的垂线
,则
轴上是否存在一点
,使得直线
与直线
的交点恒在一条定直线上?若存在,求该点的坐标及该定直线的方程,若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程