刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,若椭圆上的点与两个焦点构成的三角形中,面积最大为1.
(1)求椭圆的标准方程;
(2)设直线
与椭圆的交于
两点,
为坐标原点,且
,证明:直线
与圆
相切.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-31 09:35:56
答案(点此获取答案解析)
同类题1
如图,
分别是椭圆
的左、右焦点,且焦距为
,动弦
平行于
轴,且
.
(1)求椭圆
的方程;
(2)若点
是椭圆
上异于点
的任意一点,且直线
、
分别与
轴交于点
,若
、
的斜率分别为
,求证:
是定值.
同类题2
如图,已知过点D(0,-2)作抛物线C
1
:
=2py(p>0)的切线
l
,切点A在第二象限.
(Ⅰ)求点A的纵坐标;
(Ⅱ)若离心率为
的椭圆
(a>b>0)恰好经过点A,设直线
l
交椭圆的另一点为B,记直线
l
,OA,OB的斜率分别为k,k
1
,k
2
,若k
1
+2k
2
=4k,求椭圆方程.
同类题3
已知椭圆
:
的离心率为
,
为椭圆
上一点.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
,
两点,直线
与直线
相交于点
,求证:直线
,
,
的斜率成等差数列.
同类题4
已知椭圆
的左、右焦点是
,左右顶点是
,离心率是
,过
的直线与椭圆交于两点
P
、
Q
(不是左、右顶点),且
的周长是
,
直线
与
交于点
M
.
(1)求椭圆的方程;
(2)(ⅰ)求证直线
与
交点
M
在一条定直线
l
上;
(ⅱ)
N
是定直线
l
上的一点,且
PN
平行于
x
轴,证明:
是定值.
同类题5
已知椭圆
:
的离心率为
,焦距为
.
(1)求
的方程;
(2)若斜率为
的直线
与椭圆
交于
,
两点(点
,
均在第一象限),
为坐标原点,证明:直线
,
,
的斜率依次成等比数列.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程