刷题首页
题库
高中数学
题干
分别求满足下列条件的椭圆标准方程:
(1)中心在原点,以坐标轴为对称轴,且经过两点
,
;
(2)离心率
,且与椭圆
有相同焦点.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-23 11:13:39
答案(点此获取答案解析)
同类题1
已知椭圆
的中心在原点,焦点在
轴上,
为椭圆
短轴的一个端点,
为椭圆
的右焦点,线段
的延长线与椭圆
相交于点
,且
.
(1)求椭圆
的标准方程;
(2)设直线
与椭圆
相交于
,
两点,
为坐标原点,若直线
与
的斜率之积为
,求
的取值范围.
同类题2
已知椭圆
的左右顶点分别是
,
,点
在椭圆上,过该椭圆上任意一点
P
作
轴,垂足为
Q
,点
C
在
的延长线上,且
.
(1)求椭圆
的方程;
(2)求动点
C
的轨迹
E
的方程;
(3)设直线
(
C
点不同
A
、
B
)与直线
交于
R
,
D
为线段
的中点,证明:直线
与曲线
E
相切;
同类题3
已知椭圆
的方程为
,
在椭圆上,椭圆的左顶点为
,左、右焦点分别为
,
的面积是
的面积的
倍.
(1)求椭圆
的方程;
(2)直线
(
)与椭圆
交于
,
,连接
,
并延长交椭圆
于
,
,连接
,指出
与
之间的关系,并说明理由.
同类题4
在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)过点P(1,
).离心率为
.
(1)求椭圆C的方程;
(2)设直线
l
与椭圆C交于A,B两点.
①若直线
l
过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.
求t的最大值;
②若直线
l
的斜率为
,试探究OA
2
+ OB
2
是否为定值,若是定值,则求出此
定值;若不是定值,请说明理由.
同类题5
已知椭圆
:
的离心率为
,点
在椭圆上,
为坐标原点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知点
、
、
为椭圆
上的三点,若四边形
为平行四边形,证明四边形
的面积
为定值,并求出该定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
相同离心率的椭圆的方程