刷题首页
题库
高中数学
题干
已知两定点
,
,点
P
是平面内的动点,且
,记动点
P
的轨迹
W
.
(1)求动点
P
的轨迹
W
的方程;
(2)过点
作两条相垂直的直线分别交轨迹于
G
,
H
,
M
,
N
四点.设四边形
GMHN
面积为
S
,求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-24 09:38:32
答案(点此获取答案解析)
同类题1
如图(1),平面直角坐标系中,
的方程为
,
的方程为
,两圆内切于点
,动圆
与
外切,与
内切.
(1)求动圆
圆心
的轨迹方程;
(2)如图(2),过
点作
的两条切线
,若圆心在直线
上的
也同时与
相切,则称
为
的一个“反演圆”
(ⅰ)当
时,求证:
的半径为定值;
(ⅱ)在(ⅰ)的条件下,已知
均与
外切,与
内切,且
的圆心为
,求证:若
的“反演圆”
相切,则
也相切。
同类题2
已知圆
,
为
上任意一点,
,
的垂直平分线交
于点
,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知点
,过
的直线
交
于
两点,证明:直线
的斜率与直线
的斜率之和为定值.
同类题3
如图,已知椭圆
的长轴
,长为4,过椭圆的右焦点
作斜率为
(
)的直线交椭圆于
、
两点,直线
,
的斜率之积为
.
(1)求椭圆
的方程;
(2)已知直线
,直线
,
分别与
相交于
、
两点,设
为线段
的中点,求证:
.
同类题4
已知曲线
上动点
到定点
与定直线
的距离之比为常数
.
(1)求曲线
的轨迹方程;
(2)若过点
引曲线C的弦AB恰好被点
平分,求弦AB所在的直线方程;
(3)以曲线
的左顶点
为圆心作圆
:
,设圆
与曲线
交于点
与点
,求
的最小值,并求此时圆
的方程.
同类题5
已知曲线
上任意一点
到直线
:
的距离是它到点
距离的2倍;曲线
是以原点为顶点,
为焦点的抛物线.
(1)求
,
的方程;
(2)设过点
的动直线与曲线
相交于
,
两点,分别以
,
为切点引曲线
的两条切线
,
,设
,
相交于点
.连接
的直线交曲线
于
,
两点.
(
i
)求证:
;
(
ii
)求
的最小值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆