刷题首页
题库
高中数学
题干
直线
的方向向量为
,平面
内两共点向量
、
,下列关系中能表示
的是( )
A.
B.
C.
D.以上均不能
上一题
下一题
0.99难度 单选题 更新时间:2019-12-23 09:14:53
答案(点此获取答案解析)
同类题1
如图,正方形
和四边形
所在的平面互相垂直.
,
,
.
(
)求证:
平面
.
(
)求证:
平面
.
(
)在直线
上是否存在点
,使得
平面
?并说明理由.
同类题2
如图,在三棱锥
中,
平面
,底面
是以
为斜边的等腰直角三角形,
,
是线段
上一点.
(1)若
为
的中点,求直线
与平面
所成角的正弦值.
(2)是否存在点
,使得平面
平面
?若存在,请指出点
的位置,并加以证明;若不存在,请说明理由.
同类题3
若
=(4,2,3)是直线
l
的方向向量,
=(-1,3,0)是平面
α
的法向量,则直线
l
与平面
α
的位置关系是
A.垂直
B.平行
C.直线
l
在平面
α
内
D.相交但不垂直
同类题4
如图,在四棱锥
P
-
ABCD
中,底面
ABCD
为正方形,平面
PAD
⊥底面
ABCD
,
PD
⊥
AD
,
PD
=
AD
,
E
为棱
PC
的中点
(
I
)证明:平面
PBC
⊥平面
PCD
;
(
II
)求直线
DE
与平面
PAC
所成角的正弦值;
(
III
)若
F
为
AD
的中点,在棱
PB
上是否存在点
M
,使得
FM
⊥
BD
?若存在,求
的值,若不存在,说明理由.
同类题5
如图:已知三棱锥
中,
面
,
,
,
为
上一点,
,
分别为
的中点.
(1)证明:
.
(2)求面
与面
所成的锐二面角的余弦值.
(3)在线段
(包括端点)上是否存在一点
,使
平面
?若存在,确定
的位置;若不存在,说明理由.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明