刷题首页
题库
高中数学
题干
如图,在直三棱柱
中,
,
,
D
为
上一点.若二面角
的大小为
,则
AD
的长为( )
A.
B.
C.2
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-08-30 10:36:43
答案(点此获取答案解析)
同类题1
如图,在四棱锥
中,底面
是正方形,其他四个侧面都是等边三角形,
与
的交点为
,
为侧棱
上一点.
(Ⅰ)求证:平面
平面
;
(Ⅱ)当二面角
的大小为
时,
试判断点
在
上的位置,并说明理由.
同类题2
如图,四棱锥
,侧面
是边长为2的正三角形,且平面
平面
,底面
是
的菱形,
为棱
上的动点,且
.
(Ⅰ)求证:
;
(Ⅱ)试确定
的值,使得二面角
的平面角余弦值为
.
同类题3
如图,四棱锥
中,
底面
,底面
为梯形,
,
,且
,点
是棱
上的动点.
(Ⅰ)当
平面
时,确定点
在棱
上的位置;
(Ⅱ)在(Ⅰ)的条件下,求二面角
的余弦值.
同类题4
(本小题满分10分)如图,已知四棱锥
的底面是菱形,对角线
交于点
,
,
,
,
底面
,设点
满足
.
(1)当
时,求直线
与平面
所成角的正弦值;
(2)若二面角
的大小为
,求
的值.
同类题5
如图,在三棱锥
中,
,
为
的中点,
平面
,垂足
落在线段
上,
为
的重心,已知
,
,
,
.
(1)证明:
平面
;
(2)求异面直线
与
所成角的余弦值;
(3)设点
在线段
上,使得
,试确定
的值,使得二面角
为直二面角.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用