刷题宝
  • 刷题首页
题库 高中数学

题干

(本小题满分13分)如图,在四棱锥中,丄平面,丄,∠BCA,,DC=

(Ⅰ)证明丄;
(Ⅱ)求二面角的正弦值;
(Ⅲ)设E为棱上的点,满足异面直线BE与CD所成的角为,求AE的长.
上一题 下一题 0.99难度 解答题 更新时间:2015-05-27 04:39:50

答案(点此获取答案解析)

同类题1

如图,在四棱锥中,底面为菱形,为上一点.
(1)若平面,试说明点的位置并证明的结论;
(2)若为的中点,平面,且,
求二面角的余弦值.

同类题2

在正方体中,E是棱的中点,点M,N分别是线段与线段上的动点,当点M,N之间的距离最小时,异面直线与所成角的余弦值为(   )
A.B.C.   D

同类题3

已知在平行六面体中,过顶点的三条棱所在直线两两夹角均为,且三条棱长均为1,则此平行六面体的对角线的长为(  )
A.B.2C.D.

同类题4

已知,则向量与的夹角为________.

同类题5

如图,已知空间四边形,其对角线为,分别是对边的中点,点在线段上,,现用基向量表示向量,设,则的值分别是( )
A.B.
C.D.
相关知识点
  • 空间向量与立体几何
  • 空间向量与立体几何
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)