刷题首页
题库
高中数学
题干
如图,在正方体
中,
分别是
的中点.
(1)求证:
平面
;
(2)求二面角
余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-02-13 05:03:16
答案(点此获取答案解析)
同类题1
正方体
ABCD
-
A
1
B
1
C
1
D
1
的棱长为 2,且
AC
与
BD
交于点
O
,
E
为棱
DD
1
中点,以
A
为原点,建立空间直角坐标系
A
-
xyz
,如图所示.
(Ⅰ)求证:
B
1
O
⊥平面
EAC
;
(Ⅱ)若点
F
在
EA
上且
B
1
F
⊥
AE
,试求点
F
的坐标;
(Ⅲ)求二面角
B
1
-
EA
-
C
的正弦值.
同类题2
(本小题共13分)已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△
,使得平面
⊥平面ABD.
(Ⅰ)求证:
平面ABD;
(Ⅱ)求直线
与平面
所成角的正弦值;
(Ⅲ)求二面角
的余弦值.
同类题3
已知
,若
则实数x=
.
同类题4
直四棱柱
中,
,
,
E
、
F
分别为棱
AB
、
上的点,
,
.求证:
(1)
平面
;
(2)线段
AC
上是否存在一点
G
,使面
面
.若存在,求出
AG
的长;若不存在,请说明理由.
同类题5
如图1,在
中,
分别是
上的点,且
,将
沿
折起到
的位置,使
,如图2.
(1)求证:
平面
;
(2)若
是
的中点,求
与平面
所成角的大小;
(3)线段
上是否存在点
,使平面
与平面
垂直?说明理由.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明