刷题首页
题库
高中数学
题干
如图,已知三棱锥
的三条侧棱
,
,
两两垂直,
为等边三角形,
为
内部一点,点
在
的延长线上,且
.
(Ⅰ)证明:
;
(Ⅱ)证明:
;
(Ⅲ)若
,求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-19 11:19:01
答案(点此获取答案解析)
同类题1
如图,在正方体
中,
分别是棱
的中点,
为棱
上一点,且异面直线
与
所成角的余弦值为
.
(1)证明:
为
的中点;
(2)求平面
与平面
所成锐二面角的余弦值.
同类题2
如图,菱形
的对角线
与
相交于点
,
平面
,四边形
为平行四边形.
(1)求证:平面
平面
;
(2)若
,
,点
在线段
上,且
,求平面
与平面
所成角的正弦值.
同类题3
如图,在四棱锥
中,
底面
,底面
为梯形,
,
,且
,
.
(1)求二面角
的大小;
(2)在线段
上是否存在一点
,使得
?若存在,求出
的长;若不存在,说明理由.
同类题4
如图①,正方形
的边长为4,
,
,把四边形
沿
折起,使得
平面
,
是
的中点,如图②
(1)求证:
平面
;
(2)求二面角
的余弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用