刷题首页
题库
高中数学
题干
如图长方体
的
,底面
的周长为4,
为
的中点.
(Ⅰ)判断两直线
与
的位置关系,不需要说明理由;
(Ⅱ)当长方体
体积最大时,求二面角
的大小;
(Ⅲ)若点
满足
,试求出实数
的值,使得
平面
.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-04 08:40:54
答案(点此获取答案解析)
同类题1
如图,在四棱锥P—ABCD中,四边形ABCD为菱形,△PAD为正三角形,且E为AD的中点,BE⊥平面PA
A.
(Ⅰ)求证:平面PBC⊥平面PEB;
(Ⅱ)求平面PEB与平面PDC所成的锐二面角的余弦值.
同类题2
如图,在△
ABC
中,∠
B
=90°,
AB
=
BC
=2,
P
为
AB
边上一动点,
PD
∥
BC
交
AC
于点
D
,现将△
PDA
沿
PD
翻折至△
PDA
1
,
E
是
A
1
C
的中点.
(1)若
P
为
AB
的中点证明:
DE
∥平面
PBA
1
.
(2)若平面
PDA
1
⊥平面
PDA
,且
DE
⊥平面
CBA
1
,求二面角
P
﹣
A
1
D
﹣
C
的正弦值.
同类题3
.如图1,直角梯形ABCD中,
,E,F分别为边AD和BC上的点,且EF//AB,AD=2AE=2AB=4FC=4将四边形EFCD沿EF折起(如图2),使AD=A
A.
(Ⅰ)求证:BC//平面DAE;
(Ⅱ)求四棱锥D—AEFB的体积;
(Ⅲ)求面CBD与面DAE所成锐二面角的余弦值.
同类题4
如图所示,已知三棱锥
中,底面
是等边三角形,且
,
分别是
的中点.
(1)证明:
平面
;
(2)若
,求二面角
的余弦值.
同类题5
如图,已知直三棱柱
中,
.
(1)求
的长.
(2)若
,求二面角
的余弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用