刷题首页
题库
高中数学
题干
如图所示,在四面体ABCD中,AB,BC,CD两两互相垂直,且BC=CD=1.
(1)求证:平面ACD⊥平面ABC;
(2)求二面角C-AB-D的大小;
上一题
下一题
0.99难度 解答题 更新时间:2018-10-20 11:10:19
答案(点此获取答案解析)
同类题1
如图,三棱柱
ABC
﹣
A
'
B
'
C
',
AC
=2,
BC
=4,∠
ACB
=120°,∠
ACC
'=90°,且平面
AB
'
C
⊥平面
ABC
,二面角
A
'﹣
AC
﹣
B
'为30°,
E
、
F
分别为
A
'
C
、
B
'
C
'的中点.
(1)求证:
EF
∥平面
AB
'
C
;
(2)求
B
'到平面
ABC
的距离;
(3)求二面角
A
﹣
BB
'﹣
C
'的余弦值.
同类题2
如图1,在平行四边形
中,
,
,
,
、
分别为
、
的中点,现把平行四边形
1
沿
折起如图2所示,连接
、
、
.
(1)求证:
;
(2)若
,求二面角
的正弦值.
同类题3
直三棱柱
中,
,
,
,
F
为棱
的中点.
(1)求证:
;
(2)点
M
在线段
上运动,求三棱锥
的体积的最大值.
同类题4
已知四棱锥
的底面
为菱形,且
平面
,
,点
是
中点,点
在线段
上且满足
,
.
(1)证明:
面
;(2)求多面体
的体积.
同类题5
如图,在四棱锥
P
﹣
ABCD
中,底面
ABCD
是边长为1的正方形,
PB
⊥
BC
,
PD
⊥
DC
,且
PC
.
(1)求证:
PA
⊥平面
ABCD
;
(2)求异面直线
AC
与
PD
所成角的余弦值;
(3)求二面角
B
﹣
PD
﹣
C
的余弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直