刷题首页
题库
高中数学
题干
在下列结论中:
①若向量
共线,则向量
所在的直线平行;
②若向量
所在的直线为异面直线,则向量
一定不共面;
③若三个向量
两两共面,则向量
共面;
④已知空间的三个向量
,则对于空间的任意一个向量
总存在实数x,y,z使得
.
其中正确结论的个数是( )
A.0
B.1
C.2
D.3
上一题
下一题
0.99难度 单选题 更新时间:2018-11-12 02:06:29
答案(点此获取答案解析)
同类题1
若向量
、
、
的起点与终点
、
、
、
互不重合且无三点共线,且满足下列关系(
是空间任一点),则能使向量
、
、
成为空间一组基底的关系是
A.
B.
C.
D.
同类题2
给出下列命题,其中正确命题有( )
A.空间任意三个不共面的向量都可以作为一个基底
B.已知向量
,则
与任何向量都不能构成空间的一个基底
C.
是空间四点,若
不能构成空间的一个基底,那么
共面
D.已知向量
组是空间的一个基底,若
,则
也是空间的一个基底
同类题3
已知O,A,B,C为空间不共面的四点,且向量
,向量
,则不能与
构成空间的一个基底的是 ( )
A.
B.
C.
D.
或
同类题4
已知
,
,
,则“
”是“
,
,
构成空间的一个基底”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
同类题5
若
是空间的一个基底,则下列各组中不能构成空间一个基底的是( )
A.
,
,
B.
,
,
C.
,
,
D.
,
,
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量及其运算
空间向量的正交分解与坐标表示
空间向量基底概念及辨析