刷题首页
题库
高中数学
题干
如图,在四棱锥
中,平面
平面
MCD
,底面
ABCD
是正方形,点
F
在线段
DM
上,且
.
Ⅰ
证明:
平面
ADM
;
Ⅱ
若
,
,且直线
AF
与平面
MBC
所成的角的余弦值为
,试确定点
F
的位置.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-12 03:44:30
答案(点此获取答案解析)
同类题1
如图,四边形
是等腰梯形,
,
,
,在梯形
中,
,且
,
平面
.
(1)求证:
平面
;
(2)若二面角
的大小为
,求
的长.
同类题2
如图,在多面体
中,四边形
是正方形,在等腰梯形
中,
,
,
,平面
平面
.
(1)证明:
;
(2)求二面角
的余弦值.
同类题3
如图1,
ABCD
为菱形,∠
ABC
=60°,△
PAB
是边长为2的等边三角形,点
M
为
AB
的中点,将△
PAB
沿
AB
边折起,使平面
PAB
⊥平面
ABCD
,连接
PC
、
PD
,如图2,
(1)证明:
AB
⊥
PC
;
(2)求
PD
与平面
ABCD
所成角的正弦值
(3)在线段
PD
上是否存在点
N
,使得
PB
∥平面
MC
?若存在,请找出
N
点的位置;若不存在,请说明理由
同类题4
在
中,
,
,
,
是
中点(如图1).将
沿
折起到图2中
的位置,得到四棱锥
.
(1)将
沿
折起的过程中,
平面
是否成立?并证明你的结论;
(2)若
,过
的平面交
于点
,且
为
的中点,求三棱锥
的体积.
同类题5
在四棱锥
中,底面
是矩形,侧棱
底面
,
分别是
的中点,
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)求
与平面
所成角的正弦值;
(Ⅲ)在棱
上是否存在一点
,使得平面
平面
?若存在,求出
的值;若不存在,请说明理由.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直