刷题首页
题库
高中数学
题干
将边长为
的正方形
沿对角线
折叠,使得平面
平面
,
平面
,
是
的中点,且
.
(1)求证:
;
(2)求二面角
的大小.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-26 05:12:50
答案(点此获取答案解析)
同类题1
如图所示,已知
是正方形,
平面
,
.
(1)求异面直线
与
所成的角;
(2)在线段
上是否存在一点
,使
平面
?若存在,确定
点的位置;若不存在,说明理由.
同类题2
如图,在四棱锥
中,平面
平面
,
,
,
,
,
,
.
(1)求直线
与平面
所成角的正弦值.
(2)在棱
上是否存在点
,使得
平面
?若存在,求
的值;若不存在,说明理由.
同类题3
如图,在四棱锥
中,
底面
,且底面
为正方形,
分别为
的中点.
(1)求证:
平面
;
(2)求平面
和平面
的夹角
同类题4
设直线
的方向向量为
,平面
的法向量为
,
,则使
成立的是( )
A.
,
B.
,
C.
,
D.
,
同类题5
如图,在四棱锥
中,已知
平面
,且四边形
为直角梯形,
,
,点
,
分别是
,
的中点.
(1)求证:
平面
;
(2)若点
为棱
上一点,且平面
平面
, 求证:
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明