刷题首页
题库
高中数学
题干
在如图所示的几何体中,
平面
,四边形
为等腰梯形,
,
,
,
,
,
.
(1)证明:
;
(2)若多面体
的体积为
,求线段
的长.
上一题
下一题
0.99难度 解答题 更新时间:2018-06-09 11:10:52
答案(点此获取答案解析)
同类题1
如图,
是四边形
所在平面外的一点,四边形
是
且边长为
的菱形,侧面
为正三角形,其所在的平面垂直于底面
.若
为
的中点.
⑴求证:
平面
;
⑵求
与面
所成角.
同类题2
如图,在三棱锥
中,
平面
,
,
,
为
的中点.
(1)求证:
⊥平面
;
(2)若动点
满足
∥平面
,问:当
时,平面
与平面
所成的锐二面角是否为定值?若是,求出该锐二面角的余弦值;若不是,说明理由.
同类题3
如图,平行六面体
的下底面
是边长为
的正方形,
,且点
在下底面
上的射影恰为
点.
(Ⅰ)证明:
面
;
(Ⅱ)求二面角
的大小.
同类题4
如图1,矩形
中,
,
,
、
分别为
、
边上的点,且
,
,将
沿
折起至
位置(如图2所示)连结
、
,其中
.
(1)求证:
平面
;
(2)求二面角
的余弦值.
同类题5
如图,正四棱锥
S
-
ABCD
中,
SA
=
AB
=2,
E
,
F
,
G
分别为
BC
,
SC
,
CD
的中点.设
P
为线段
FG
上任意一点.
(1)求证:
EP
⊥
AC
;
(2)当
P
为线段
FG
的中点时,求直线
BP
与平面
EFG
所成角的余弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直
线面垂直证明线线垂直