刷题首页
题库
高中数学
题干
已知三棱锥
的底面
是直角三角形,
⊥
,
,
⊥平面
,
是
的中点.若此三棱锥的体积为
,则异面直线
与
所成角的大小为( )
A.45°
B.90°
C.60°
D.30°
上一题
下一题
0.99难度 单选题 更新时间:2019-12-13 10:38:22
答案(点此获取答案解析)
同类题1
如图所示的矩形
中,
,点
为
边上异于
,
两点的动点,且
,
为线段
的中点,现沿
将四边形
折起,使得
与
的夹角为
,连接
,
.
(1)探究:在线段
上是否存在一点
,使得
平面
,若存在,说明点
的位置,若不存在,请说明理由;
(2)求三棱锥
的体积的最大值,并计算此时
的长度.
同类题2
如图,圆形纸片的圆心为
,半径为
,该纸片上的正方形
的中心为
,
、
、
、
为圆
上点,
,
,
,
分别是以
,
,
,
为底边的等腰三角形,沿虚线剪开后,分别以
,
,
,
为折痕折起
,
,
,
,使得
、
、
、
重合,得到四棱锥.当该四棱锥体积取得最大值时,正方形
的边长为______
.
同类题3
如图,在四棱锥
中,底面
为正方形,
底面
,
,
为线段
的中点.
(1)若
为线段
上的动点,证明:平面
平面
;
(2)若
为线段
,
,
上的动点(不含
,
),
,三棱锥
的体积是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.
同类题4
已知四边形ABCD为平行四边形,BC⊥平面ABE,AE⊥BE,BE =" BC" = 1,AE =
,M为线段AB的中点,N为线段DE的中点,P为线段AE的中点.
(1)求证:MN⊥EA;
(2)求四棱锥M – ADNP的体积.
同类题5
在四面体
中,
,且
,
,
,则该四面体体积的最大值为________,该四面体外接球的表面积为________.
相关知识点
空间向量与立体几何
空间几何体
空间几何体的表面积与体积
柱、锥、台的体积
锥体体积的有关计算
求线面角