刷题首页
题库
高中数学
题干
如图,直三棱柱
中,底面是边长为2的正三角形,侧棱长为
,
为
的中点
(1)若
,证明:
平面
;
(2)若
,求直线
与平面
所成角的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-16 03:06:26
答案(点此获取答案解析)
同类题1
如图,四面体
中,
、
分别
、
的中点,
,
.
(I)求证:
平面
;
(II)求异面直线
与
所成角的余弦值的大小;
(III)求点
到平面
的距离.
同类题2
如图,在多面体
中,平面
平面
,四边形
为正方形,四边形
为梯形,且
,
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
同类题3
如图,已知四棱锥
中,
平面
,底面
是直角梯形,且
.
(1)求证:
平面
;
(2)若
是
的中点,求三棱锥
的体积.
同类题4
如图,四棱锥
中,
为侧棱
上不同于端点的任意一个动点,且
平面
.
(1)证明:
平面
;
(2)若
平面
,
,求
的值.
同类题5
如图1,矩形
中,
,
分别为
边上的点,且
,将
沿
折起至
位置如图2所示,连结
,其中
.
(1)求证:
平面
;
(2)求点
到平面
的距离.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直
求线面角