刷题首页
题库
高中数学
题干
如图1所示,在等腰梯形
,
,
,垂足为
,
,
.将
沿
折起到
的位置,使平面
平面
,如图2所示,点
为棱
上一个动点.
(Ⅰ)当点
为棱
中点时,求证:
平面
(Ⅱ)求证:
平面
;
(Ⅲ)是否存在点
,使得二面角
的余弦值为
?若存在,求出
的长;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-15 08:09:20
答案(点此获取答案解析)
同类题1
如图,正方形
和梯形
所在的平面互相垂直,
,
,
与
交于点
,
,
分别为线段
,
的中点.
(Ⅰ)求证:
;
(Ⅱ)求证:
平面
;
(Ⅲ)若
,求证:平面
平面
.
同类题2
如图(1)
中,
,
,
,
分别是
与
的中点,将
沿
折起连接
与
得到四棱锥
(如图(2)),
为线段
的中点.
(1)求证:
平面
;
(2)当四棱锥
体积最大时,求直线
与平面
所成的角的正弦值.
同类题3
如图,在斜三棱柱
中,
,
,
分别是
,
的中点.
(1)求证:
平面
;
(2)若
,求证:
.
同类题4
如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.
(1)证明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.
同类题5
如图,已知
所在的平面,
是
的直径,
是
上一点,且
是
中点,
为
中点.
(1)求证:
面
;
(2)求证:
面
;
(3)求三棱锥
的体积.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行
证明线面垂直