刷题首页
题库
高中数学
题干
如图,
是边长为4的正方形,
平面
,
,
.
(1)求证:
平面
;
(2)设点
是线段
上一个动点,试确定点
的位置,使得
平面
,并
证明你的结论.
上一题
下一题
0.99难度 解答题 更新时间:2011-12-01 07:52:41
答案(点此获取答案解析)
同类题1
如图,在底面为菱形的四棱锥
中,
,点
在
上,且
.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的正弦值;
(Ⅲ)在棱
上是否存在点
使得
平面
?若存在,试求
的值;若不存在,请说明理由.
同类题2
如图甲,在直角梯形
中,
,
,
,
是
的中点. 现沿
把平面
折起,使得
(如图乙所示),
、
分别为
、
边的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)在
上找一点
,使得
平面
.
同类题3
如图,在底面是直角梯形的四棱锥
中,
,
平面
,
,梯形上底
.
(1)求证:
平面
;
(2)求面
与面
所成锐二面角的正切值;
(3)在PC上是否存在一点E,使得
?若存在,请找出;若不存在,说明理由.
同类题4
如图,在正方体
中,
是
的中点.
(1)求证:
平面
;
(2)求证:平面
平面
.(只需在下面横线上填写给出的如下结论的
序号
:①
平面
,②
平面
,③
,④
,⑤
)
证明:(1)设
,连接
.因为底面
是正方形,所以
为
的中点,又
是
的中点,所以_________.因为
平面
,____________,所以
平面
.
(2)因为
平面
平面
,所以___________,因为底面
是正方形,所以_______,又因为
平面
平面
,所以_________.又
平面
,所以平面
平面
.
同类题5
如图,四边形
中,
,
分别在
上,
.现将四边形
沿
折起,使得平面
平面
.
(1)当
时,是否在折叠后的
上存在一点
,使得
平面
?若存在,求出
点位置;若不存在,说明理由
(2)设
,问当
为何值时,三棱锥
的体积有最大值?并求出这个最大值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
补全线面平行的条件
证明线面垂直