刷题首页
题库
高中数学
题干
如图,
是边长为4的正方形,
平面
,
,
.
(1)求证:
平面
;
(2)设点
是线段
上一个动点,试确定点
的位置,使得
平面
,并
证明你的结论.
上一题
下一题
0.99难度 解答题 更新时间:2011-12-01 07:52:41
答案(点此获取答案解析)
同类题1
如图,四边形
中,
,
,
,
,
,
分别在
,
上,
,现将四边形
沿
折起,使平面
平面
.
(Ⅰ)若
,在折叠后的线段
上是否存在一点
,且
,使得
平面
?若存在,求出
的值;若不存在,说明理由;
(Ⅱ)当三棱锥
的体积最大时,求二面角
的余弦值.
同类题2
如图,在三棱锥
中,已知
是正三角形,
平面BCD,
,E为BC的中点,F在棱AC上,且
.
求三棱锥
的表面积;
求证
平面DEF;
若M为BD的中点,问AC上是否存在一点N,使
平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
同类题3
如图,矩形
中,
,
,
、
是边
的三等分点.现将
、
分别沿
、
折起,使得平面
、平面
均与平面
垂直.
(1)若
为线段
上一点,且
,求证:
平面
;
(2)求二面角
的正弦值.
同类题4
如图甲,在直角梯形
中,
,
,
,
是
的中点. 现沿
把平面
折起,使得
(如图乙所示),
、
分别为
、
边的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)在
上找一点
,使得
平面
.
同类题5
如图,在四棱锥
中,
平面
,底面
为菱形,且
,
E
为
的中点.
(1)求证:平面
平面
;
(2)棱
上是否存在点
F
,使得
平面
?说明理由.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
补全线面平行的条件
证明线面垂直