刷题首页
题库
高中数学
题干
如图所示,平面图形
中,其中矩形
的边长分别为
,
,等腰梯形
的边长分别为
,
.现将该平面图形沿着
折叠,使梯形
与矩形
垂直,再连接
,得到如图所示的空间图形,对此空间图形解答如下问题:
(1)证明:
;
(2)求平面
与平面
所成锐二面角的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-21 04:28:53
答案(点此获取答案解析)
同类题1
如图所示,在四棱锥E-ABCD中,平面ABCD⊥平面AEB,且四边形ABCD为矩形.∠BAE=90°,AE=4,AD=2,F,G,H分别为BE,AE,AD的中点.
(Ⅰ)求证:CD∥平面FGH;
(Ⅱ)求证:平面FGH⊥平面ADE;
(Ⅲ)在线段DE求一点P,使得AP⊥FH,并求出AP的值.
同类题2
如图,已知菱形
和矩形
所在的平面互相垂直,
.
(1)若
为
的中点,求证:
平面
;
(2)若图中七面体的体积为
,且
,求点
到平面
的距离.
同类题3
如图,在四棱锥
中,底面为等腰梯形,且底面与侧面
垂直,
,
分别为线段
的中点,
,
,
,且
.
(1)证明:
平面
;
(2)求
与平面
所成角的正弦值.
同类题4
已知直线
平面
,那么
与平面
的关系是
A.
B.
C.
或
D.
与
相交
同类题5
如图,在四棱锥
中,底面
ABCD
为菱形,
,
Q
为
AD
的中点,
.
(1)求证:
平面
PQB
;
(2)在线段
PC
上是否存在点
M
,使
平面
MDB
?若存在,求出点
M
的位置;若不存在,请说明理由.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定