刷题首页
题库
高中数学
题干
如图,
是边长为3的正方形,
平面
,
,且
,
.
(1)试在线段
上确定一点
的位置,使得
平面
;
(2)求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-05-25 09:37:35
答案(点此获取答案解析)
同类题1
如图所示,正三棱柱
的底面边长是2,侧棱长是
,
是
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)在线段
上是否存在一点
,使得平面
平面
?若存在,求出
的长;若不存在,说明理由.
同类题2
如图所示,在三棱柱
中,
为正方形,
是菱形,平面
平面
.
(1)求证:
平面
;
(2)求证:
;
(3)设点E,F,H,G分别是
的中点,试判断
四点是否共面,并说明理由.
同类题3
如图,矩形
中,
平面
,
,F为CE上的点,且
平面
.
(1)求证:
平面
;
(2)求证:
//平面
.
同类题4
如图,在直四棱柱
ABCD
-
A
B
C
D
中,底面
ABCD
为等腰梯形,
AB
//
CD
,
AB
=4,
BC
=
CD
=2,
AA
=2,
E
、
E
分别是棱
AD
、
AA
的中点.
(1)设
F
是棱
AB
的中点,证明:直线
EE
//平面
FCC
;
(2)证明:平面
D
1
AC
⊥平面
BB
1
C
1
C
.
同类题5
(13分)(2011•天津)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.
(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)证明:AD⊥平面PAC;
(Ⅲ)求直线AM与平面ABCD所成角的正切值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行