刷题首页
题库
高中数学
题干
如图,在边长为
的正方形
中,点
是
的中点,点
是
的中点,点
是
上的点,且
.将△AED,△DCF分别沿
,
折起,使
,
两点重合于
,连接
,
.
(1) 求证:
;
(2)求证:
平面
.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-08 03:09:42
答案(点此获取答案解析)
同类题1
在斜三棱柱
中,
,平面
底面
,点
、D分别是线段
、BC的中点.
(1)求证:
;
(2)求证:AD//平面
.
同类题2
如图,在四棱锥
中,
平面
,
为线段
上一点不在端点.
(1)当
为中点时,
,求证:
面
(2)当
为
中点时,是否存在
,使得直线
与平面
所成角的正弦值为
,若存在求出
M
的坐标,若不存在,说明理由.
同类题3
如图,在三棱台
ABC
﹣
A
1
B
1
C
1
中,底面
ABC
是边长为2的等边三角形,上、下底面的面积之比为1:4,侧面
A
1
ABB
1
⊥底面
ABC
,并且
A
1
A
=
A
1
B
1
,∠
AA
1
B
=90°.
(1)平面
A
1
C
1
B
∩平面
ABC
=
l
,证明:
A
1
C
1
∥
l
;
(2)求平面
A
1
C
1
B
与平面
ABC
所成二面角的正弦值.
同类题4
如图所示,在四棱锥
S-ABCD
中,四边形
ABCD
是菱形,
,
,点
P
,
Q
,
M
分别是线段
SD
,
PD
,
AP
的中点,点
N
是线段
SB
上靠近
B
的四等分点.
(1)若
R
在直线
MQ
上,求证:
平面
ABCD
;
(2)若
平面
ABCD
,求平面
SAD
与平面
SBC
所成的锐二面角的余弦值.
同类题5
如图,在正三棱柱
中,
为
的中点.
(1)求证:
平面
;
(2)求证:
平面
.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行
线面垂直证明线线垂直