刷题首页
题库
高中数学
题干
如图,平面ABCD⊥平面CDEF,且四边形ABCD是梯形,四边形CDEF是矩形,
,M是线段DE上的点,满足DM=2M
A.
(1)证明:BE//平面MAC;
(2)求直线BF与平面MAC所成角的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-15 03:17:53
答案(点此获取答案解析)
同类题1
如图1,在高为2的梯形
中,
,
,
,过
、
分别作
,
,垂足分别为
、
.已知
,将梯形
沿
、
同侧折起,使得
,
,得空间几何体
,如图2.
(Ⅰ)证明:
;
(Ⅱ)求三棱锥
的体积.
同类题2
如图,在
中,
,D是AE的中点,C是线段BE上的一点,且
,
,将
沿AB折起使得二面角
是直二面角.
(l)求证:CD平面PAB;
(2)求直线PE与平面PCD所成角的正切值.
同类题3
已知等腰梯形
ABCD
(如图1所示),其中
AB
∥
CD
,
E
,
F
分别为
AB
和
CD
的中点,且
AB
=
EF
=2,
CD
=6,
M
为
BC
中点.现将梯形
ABCD
沿着
EF
所在直线折起,使平面
EFCB
⊥平面
EFDA
(如图2所示),
N
是线段
CD
上一动点,且
.
(1)求证:
MN
∥平面
EFDA
;
(2)求三棱锥
A
-
MNF
的体积.
同类题4
已知
,
,
交于点
,
,
,
,
分别为
,
的中点.求证:
平面
.
同类题5
如图,在四棱锥
中,底面
是正方形,侧棱
底面
,且
,过棱
的中点
,作
交
于点
.
(1)证明:
平面
;
(2)求三棱锥
的体积.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行