刷题首页
题库
初中数学
题干
如图1,在四边形ABCD中,
ABC=30
,
ADC=60
,AD=DC
(1)连接AC, 则
ADC的形状是 ________三角形
(2)如图2,在四边形ABCD的外部以BC为一边作等边
BCE,,并连接AE,
试说明:BD=AE
请你说明
成立的理由。
图1 图2
上一题
下一题
0.99难度 解答题 更新时间:2017-11-16 08:54:30
答案(点此获取答案解析)
同类题1
如图,在
中,
,
为
中点,
,
交
于点
,
交
于点
,则线段
,
,
之间的数量关系为___________.
同类题2
如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,则下列结论:①△AFB≌△ADC;②△ABD为等腰三角形;③∠ADC=120°;④BE
2
+DC
2
=DE
2
,其中正确的有( )个
A.4
B.3
C.2
D.1
同类题3
问题背景:如图1,在正方形
ABCD
的内部,作∠
DAE
=∠
ABF
=∠
BCG
=∠
CDH
,根据三角形全等的条件,易得△
DAE
≌△
ABF
≌△
BCG
≌△
CDH
,从而得四边形
EFGH
是正方形.
类比探究:如图2,在正△
ABC
的内部,作∠1=∠2=∠3,
AD
,
BE
,
CF
两两相交于
D
,
E
,
F
三点(
D
,
E
,
F
三点不重合).
(1)△
ABD
,△
BCE
,△
CAF
是否全等?如果是,请选择其中一对进行证明;
(2)△
DEF
是否为正三角形?请说明理由;
(3)如图3,进一步探究发现,△
ABD
的三边存在一定的等量关系,设
BD
=
a
,
AD
=
b
,
AB
=
c
,请探索
a
,
b
,
c
满足的等量关系.
同类题4
在△ABC中,AB=AC,点E是AC的中点,线段AE以A为中心顺时针旋转,点E落在线段BE上的D处,线段CE以C为中心顺时针旋转,点E落在BE的延长线上的点F处,连接AF,C
A.
(1)求证:四边形ADCF是平行四边形;
(2)当BD=CD时,探究线段AB,BC,BF三者之间的等量关系,并证明;
(3)在(2)的条件下,若DE=1,试求BC的值.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
利用勾股定理证明线段平方关系