刷题首页
题库
高中数学
题干
如图,在四棱锥E-ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.
(1)求证:DE//平面ACF;
(2)若AB=
CE,在线段EO上是否存在点G,使得CG⊥平面BDE?若存在,请证明你的结论;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2016-05-09 05:27:40
答案(点此获取答案解析)
同类题1
已知
表示两条不同直线,
表示平面.下列说法正确的是
A.若
则
B.若
,则
C.若
则
D.若
,则
同类题2
设
为两个不重合的平面,
为两条不重合的直线,给出下列四个命题:
①若
,则
;
②若
,则
;
③若
则
;
④若
与
相交且不垂直,则
与
一定不垂直.
其中,所有真命题的序号是
.
同类题3
如图所示,已知
平面
,
分别是
的中点,
.
(1)求证:
平面
;
(2)求证:平面
平面
.
同类题4
如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有( )
①存在点E使得直线SA⊥平面SBC;
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行;
④存在点E使得SE⊥BA.
A.1个
A.2个
B.3个
C.4个
同类题5
(2008•崇文区一模)如图,在正方体ABCD﹣A
1
B
1
C
1
D
1
中,O是底面正方形ABCD的中心,M是D
1
D的中点,N是A
1
B
1
上的动点,则直线NO、AM的位置关系是( )
A.平行
B.相交
C.异面垂直
D.异面不垂直
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
平行公理