刷题首页
题库
高中数学
题干
在数学历史中有很多公式都是数学家欧拉(Leonhard Euler)发现的,它们都叫做欧拉公式,分散在各个数学分支之中.任意一个凸多面体的顶点数
、棱数
、面数
之间,都满足关系式
,这个等式就是立体几何中的“欧拉公式”若一个凸二十面体的每个面均为三角形,则由欧拉公式可得该多面体的顶点数为( )
A.10
B.12
C.15
D.20
上一题
下一题
0.99难度 单选题 更新时间:2019-01-24 10:55:31
答案(点此获取答案解析)
同类题1
(1)一个几何体由7个面围成,其中两个面是互相平行且全等的五边形,其他各面都是全等的矩形,则这个几何体是______.
(2)一个多面体最少有个_____面,此时这个多面体是______.
同类题2
已知正方体有8个不同顶点,现任意选择其中4个不同顶点,然后将它们两两相连,可组成平面图形成空间几何体.在组成的空间几何体中,可以是下列空间几何体中的________.(写出所有正确结论的编号)
①每个面都是直角三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是全等的直角三角形的四面体;
④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.
同类题3
给出下列命题:
存在每个面都是直角三角形的四面体;
若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;
棱台的侧棱延长后交于一点;
用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;
其中正确命题的个数是
A.1
B.2
C.3
D.4
同类题4
若四面体
的三组对棱分别相等,即
,
,
,给出下列结论:
①四面体
每组对棱相互垂直;
②四面体
每个面的面积相等;
③从四面体
每个顶点出发的三条棱两两夹角之和大于
而小于
;
④连结四面体
每组对棱中点的线段相互垂直平分;
⑤从四面体
每个顶点出发的三条棱的长可作为一个三角形的三边长;
其中正确结论的序号是__________.(写出所有正确结论的序号)
同类题5
长度分别为
、
的六条线段能成为同一个四面体的六条棱的充要条件是( )
A.
B.
C.
D.
相关知识点
空间向量与立体几何
空间几何体
空间几何体的结构
棱锥
棱锥的结构特征和分类