刷题宝
  • 刷题首页
题库 高中数学

题干

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.

(I)证明:AE⊥PD;
(II)设AB=PA=2,
①求异面直线PB与AD所成角的正弦值;
②求二面角E-AF-C的余弦值.
上一题 下一题 0.99难度 解答题 更新时间:2019-12-22 11:08:50

答案(点此获取答案解析)

同类题1

如图,在三棱锥S—ABC中,SA=SB,AC=BC,O为AB的中点,SO⊥平面ABC,AB=4,OC=2,N是SA的中点,CN与SO所成的角为α,且tanα=2.

(1)证明:OC⊥ON;
(2)求三棱锥S—ABC的体积.

同类题2

如图,在三棱锥中,点,分别是,的中点,,.

求证:⑴平面;
⑵.

同类题3

如图,AB是圆O的直径,C是圆O上不同于A,B的一点,PA⊥平面ABC,E是PC的中点,,PA=AC=1.
(1)求证:AE⊥PB;
(2)求三棱锥C-ABE的体积.
(3)求二面角A-PB-C的正弦值.

同类题4

已知四棱锥中,,,.

(1)求证:;
(2)若为线段的中点,求三棱锥的体积.

同类题5

如图,三棱柱中,点在平面ABC内的射影D在AC上,,.
(1)证明:;
(2)设直线与平面的距离为,求二面角的大小.
相关知识点
  • 空间向量与立体几何
  • 点、直线、平面之间的位置关系
  • 直线、平面垂直的判定与性质
  • 线面垂直的性质
  • 线面垂直证明线线垂直
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)