刷题首页
题库
高中数学
题干
如图所示,在四棱锥
E
﹣
ABCD
中,底面
ABCD
是菱形,∠
ADC
=60°,
AC
与
BD
交于点
O
,
EC
⊥底面
ABCD
,
F
为
BE
的中点,
AB
=
CE
=2.
(1)求证:
DE
∥平面
ACF
;
(2)求异面直线
EO
与
AB
所成角的余弦值;
上一题
下一题
0.99难度 解答题 更新时间:2019-12-27 07:42:41
答案(点此获取答案解析)
同类题1
如图,在多面体
中,平面
平面
,四边形
为正方形,四边形
为梯形,且
,
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
同类题2
如图,在四棱锥
中,
底面
,
,
,
,
,点
为棱
的中点
(1)证明:
平面
;
(2)平面
将四棱锥
分成多面体
和多面体
两部分,求上述两个多面体的体积比
同类题3
如图,在几何体中,四边形
是菱形,
是矩形,平面
平面
,
为
中点.
(1)求证:
平面
;
(2)求证:
.
同类题4
如图所示,在四棱锥P-ABCD中,底面ABCD是棱长为2的正方形,侧面PAD为正三角形,且面PAD⊥面ABCD,E、F分别为棱AB、PC的中点.
(1)求证:EF∥平面PA
A.
(2)求三棱锥B-EFC的体积.
同类题5
如图,四棱锥
的底面是正方形,
底面
,
,
,点
、
分别为棱
、
的中点.
(1)求证:
∥平面
;
(2)求点
到平面
的距离.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行