刷题首页
题库
高中数学
题干
已知正方体有8个不同顶点,现任意选择其中4个不同顶点,然后将它们两两相连,可组成平面图形成空间几何体.在组成的空间几何体中,可以是下列空间几何体中的________.(写出所有正确结论的编号)
①每个面都是直角三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是全等的直角三角形的四面体;
④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.
上一题
下一题
0.99难度 填空题 更新时间:2019-12-30 08:29:27
答案(点此获取答案解析)
同类题1
下列结论正确的是( )
A.各个面都是三角形的几何体是三棱锥
B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
同类题2
画出三棱锥
,写出其棱所在直线中互为异面直线的直线.
同类题3
根据下列对几何体结构特征的描述,说出几何体的名称.
(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;
(2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封闭曲面所围成的几何体;
(3)由五个面围成,其中一个面是正方形,其他各面都是有一个公共顶点的全等三角形;
(4)一个圆绕其一条直径所在的直线旋转180°形成的封闭曲面所围成的几何体.
同类题4
如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的最长棱长为
A.
B.4
C.6
D.
同类题5
若四面体
的三组对棱分别相等,即
,
,
,给出下列结论:
①四面体
每组对棱相互垂直;
②四面体
每个面的面积相等;
③从四面体
每个顶点出发的三条棱两两夹角之和大于
而小于
;
④连结四面体
每组对棱中点的线段相互垂直平分;
⑤从四面体
每个顶点出发的三条棱的长可作为一个三角形的三边长;
其中正确结论的序号是__________.(写出所有正确结论的序号)
相关知识点
空间向量与立体几何
空间几何体
空间几何体的结构
棱锥
棱锥的结构特征和分类