刷题首页
题库
高中数学
题干
已知正方形
ABCD
,
E
,
F
分别为
AB
,
CD
的中点,将△
ADE
沿
DE
折起,使△
ACD
为等边三角形,如图所示,记二面角
A-DE-C
的大小为
.
(1)证明:点
A
在平面
BCDE
内的射影
G
在直线
EF
上;
(2)求角
的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-12 10:12:51
答案(点此获取答案解析)
同类题1
如图,在四棱锥
中,
平面
,
,
,
为线段
上的点,
(1)证明:
平面
;
(2)若
是
的中点,求
与平面
所成的角的正切值;
(3)若
满足
面
,求
的值.
同类题2
如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为a的菱形.侧面PAD为正三角形,其所在平面垂直于底面ABCD.
(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB.
同类题3
如图,长方体
ABCD
﹣
A
1
B
1
C
1
D
1
中,
AD
=
AA
1
=1,
AB
=
m
,点
M
是棱
CD
的中点.
(1)求异面直线
B
1
C
与
AC
1
所成的角的大小;
(2)是否存在实数
m
,使得直线
AC
1
与平面
BMD
1
垂直?说明理由;
(3)设
P
是线段
AC
1
上的一点(不含端点),满足
λ
,求
λ
的值,使得三棱锥
B
1
﹣
CD
1
C
1
与三棱锥
B
1
﹣
CD
1
P
的体积相等.
同类题4
如图所示,矩形
中,
⊥平面
,
,
为
上的点,且
⊥平面
.
(1)求证:
⊥平面
;
(2)求三棱锥
的体积.
同类题5
已知三棱锥
的直观图和三视图如下:
(1)求证:
底面
;
(2)求三棱锥
的体积;
(3)求三棱锥
的侧面积.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直