刷题首页
题库
高中数学
题干
如图(1),在直角梯形
中,
为
的中点,四边形
为正方形,将
沿
折起,使点
到达点
,如图(2),
为
的中点,且
,点
为线段
上的一点.
(1)证明:
;
(2)当
与
夹角最小时,求平面
与平面
所成锐二面角的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 10:58:08
答案(点此获取答案解析)
同类题1
如图,在四棱锥
中,
底面
,
,
,
,
,
为棱
上的一点,平面
平面
.
(Ⅰ)证明:
;
(Ⅱ)求二面角
的大小.
同类题2
如图,在底面是矩形的四棱锥
中,
平面
,
,
.
(1)求证:平面
平面
;
(2)在
上是否存在一点
,使得
到平面
的距离为1?若存在,求出
;若不存在,请说明理由.
同类题3
如图,在正三棱柱
中,
,
,
为
的中点.
(Ⅰ)证明:
面
;
(Ⅱ)求二面角
的大小.
同类题4
正方体
ABCD
-
A
1
B
1
C
1
D
1
的棱长为 2,且
AC
与
BD
交于点
O
,
E
为棱
DD
1
中点,以
A
为原点,建立空间直角坐标系
A
-
xyz
,如图所示.
(Ⅰ)求证:
B
1
O
⊥平面
EAC
;
(Ⅱ)若点
F
在
EA
上且
B
1
F
⊥
AE
,试求点
F
的坐标;
(Ⅲ)求二面角
B
1
-
EA
-
C
的正弦值.
同类题5
如图,在四棱锥
中,平面
平面
,
,
,
,
,
,
.
(1)求直线
与平面
所成角的正弦值.
(2)在棱
上是否存在点
,使得
平面
?若存在,求
的值;若不存在,说明理由.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明