刷题首页
题库
高中数学
题干
如图,四边形
为矩形,
,
,
为线段
上的动点.
(1)若
为线段
的中点,求证:
平面
;
(2)若三棱锥
的体积记为
,四棱锥
的体积记为
,当
时,求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-14 05:33:00
答案(点此获取答案解析)
同类题1
如图所示,在三棱锥
中,
,
,
为
的中点,
垂直平分
,且
分别交
于点
.
(1)证明:
;
(2)证明:
.
同类题2
如图,
分别是空间四边形
的边
上的中点.
(1)求证:四边形
为平行四边形;
(2)求证:直线
∥平面
;
(3)若
,且
,求四边形
的面积.
同类题3
一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设
的中点为
,
的中点为
(1)请将字母
标记在正方体相应的顶点处(不需说明理由)
(2)证明:直线
平面
(3)求二面角
的余弦值.
同类题4
如图,
是边长为3的等边三角形,四边形
为正方形,平面
平面
.点
,
分别为棱
,
上的点,且
,
为棱
上一点,且
.
(Ⅰ)当
时,求证:
平面
;
(Ⅱ)已知三棱锥
的体积为
,求
的值.
同类题5
如图,在四棱锥
中,
底面
,
,
,
,
,点
为棱
的中点.
(1)证明:
面
;
(2)证明:面
面
;
(3)求直线
与面
所成角的正弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行
判断线面是否垂直