刷题首页
题库
高中数学
题干
在如图所示的几何体中,四边形
是正方形,四边形
是梯形,
∥
,
,平面
平面
,且
.
(Ⅰ)求证:
∥平面
;
(Ⅱ)求二面角
的大小;
(Ⅲ)已知点
在棱
上,且异面直线
与
所成角的余弦值为
,求线段
的长.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-17 11:40:22
答案(点此获取答案解析)
同类题1
如图,已知梯形
中,
,
,
,四边形
为矩形,
,平面平面
平面
.
(
)求证:
平面
.
(
)求平面
与平面
所成锐二面角的余弦值.
(
)在线段
上是否存在点
,使得直线
与平面
所成角的正弦值为
,若存在,求出线段
的长.
同类题2
设平面
α
与向量
垂直,平面
β
与向量
垂直,则平面
α
与
β
的位置关系是
________
.
同类题3
如图,在四棱柱ABCDA
1
B
1
C
1
D
1
中,侧棱A
1
A⊥底面ABCD,AB⊥AC,AB=1,AC=AA
1
=2,AD=CD=
,且点M和N分别为B
1
C和D
1
D的中点.
(Ⅰ)求证:MN∥平面ABCD;
(Ⅱ)求二面角D
1
-AC-B
1
的正弦值;
(Ⅲ)设E为棱A
1
B
1
上的点.若直线NE和平面ABCD所成角的正弦值为
,求线段A
1
E的长.
同类题4
已知梯形
如下图所示,其中
,
,
为线段
的中点,四边形
为正方形,现沿
进行折叠,使得平面
平面
,得到如图所示的几何体.已知当点
满足
时,平面
平面
,则
的值为( )
A.
B.
C.
D.
同类题5
用空间向量解决下列问题:如图,在斜三棱柱
中,
是
的中点,
⊥平面
,
,
.
(1)求证:
;
(2)求二面角
的余弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明