刷题首页
题库
高中数学
题干
(题文)设等差数列
的前
项和为
,
,数列
的
前
项和为
,满足
.
(Ⅰ)求数列
的通项公式及数列
的前
项和;
(Ⅱ)判断数列
是否为等比数列?并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2016-09-09 03:55:49
答案(点此获取答案解析)
同类题1
在公差不为零的等差数列
中,
,且
成等比数列.
(1)求
的通项公式;
(2)设
,求数列
的前
项和
.
同类题2
已知数列
是递增的等差数列,
,
,
,
成等比数列.
(1)求数列
的通项公式;
(2)若
,数列
的前
项和
,求满足
的最小的
的值.
同类题3
已知数列
是等差数列,其前
项和为
,
,
,
是等比数列,
,
.
(1)求数列
的通项公式;
(2)求数列
的前10项和
.
同类题4
已知在等差数列
中,
,
.
(1)求数列
的通项公式;
(2)若数列
的前
项和
,求
的值.
同类题5
设数列
中
则数列
的通项公式为()
A.
B.
C.
D.
相关知识点
数列
等差数列
等差数列及其通项公式
利用定义求等差数列通项公式
由定义判定等比数列
裂项相消法求和