刷题首页
题库
高中数学
题干
已知数列
中,
,其前
项的和为
,且满足
.
(1)求证:数列
是等差数列;
(2)证明:
.
上一题
下一题
0.99难度 解答题 更新时间:2018-08-01 09:55:54
答案(点此获取答案解析)
同类题1
已知数列
各项均为正数,
,
,且
对任意
恒成立.
(1)若
,求
的值;
(2)若
,(i)求证:数列
是等差数列;(ii)在数列
中,对任意
,总存在
,(其中
),使
构成等比数列,求出符合条件的一组
.
同类题2
数列
,定义
为数列
的一阶差分数列,其中
.
(1)若
,试判断
是否是等差数列,并说明理由;
(2)若
,
,求数列
的通项公式;
(3)对(2)中的数列
,是否存在等差数列
,使得
对一切
都成立,若存在,求出数列
的通项公式;若不存在,请说明理由.
同类题3
在数列
中,
,
.
(1)求证:数列
为等差数列;
(2)设数列
满足
,求
的通项公式.
同类题4
.已知:在数列{
a
n
}中,
a
1
= 0,
a
n
+ 1
a
n
– 2
a
n
+ 1
+ 1 = 0,
S
n
是数列{
a
n
}前
n
项之和.
(1)求证:数列
为等差数列;
(2)已知:当
x
>0时,ln (1 +
x
)<
x
恒成立,求证:
S
n
<
n
– ln (1 +
n
);
(3)设
b
n
=
,求证:对任意的正整数
n
,
m
均有|
b
n
–
b
m
|<
.
同类题5
已知数列
满足:
,
,
.
(1)求数列
的通项公式;
(2)设数列
的前
项和为
,且满足
,试确定
的值,使得数列
为等差数列;
(3)将数列
中的部分项按原来顺序构成新数列
,且
,求证:存在无数个满足条件的无穷等比数列
.
相关知识点
数列
等差数列
等差数列及其通项公式
由递推关系证明数列是等差数列
裂项相消法求和