刷题首页
题库
高中数学
题干
已知正项数列
,
满足:对任意正整数
,都有
,
,
成等差数列,
,
,
成等比数列,且
,
.
(Ⅰ)求证:数列
是等差数列;
(Ⅱ)求数列
,
的通项公式;
(Ⅲ)设
=
+
+…+
,如果对任意的正整数
,不等式
恒成立,求实数
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-16 03:41:39
答案(点此获取答案解析)
同类题1
设
,数列
满足
,
.
(Ⅰ)当
时,求证:数列
为等差数列并求
;
(Ⅱ)证明:对于一切正整数
,
.
同类题2
已知含有
个元素的正整数集
(
,
)具有性质
:对任意不大于
(其中
)的正整数
,存在数集
的一个子集,使得该子集所有元素的和等于
.
(Ⅰ)写出
,
的值;
(Ⅱ)证明:“
,
,…,
成等差数列”的充要条件是“
”;
(Ⅲ)若
,求当
取最小值时
的最大值.
同类题3
已知
,
,
,数列
满足:
,
,
.
(Ⅰ) 求证:数列
等差数列;数列
是等比数列;(其中
);
(Ⅱ) 记
,对任意的正整数
,不等式
恒成立,求
的取值范围.
同类题4
已知正项数列
的前
和为
,
,
.
(1)求数列
的通项公式;
(2)如果实数
使得
对所有正整数
都成立,求
的取值范围.
同类题5
对于数列
,如果存在正整数
,使得
对一切
,
都成立,则称数列
为
等差数列.
(1)若数列
为2-等差数列,且前四项分别为2,-1,4,-3,求
的值;
(2)若
既是2-等差数列,又是3-等差数列,证明:
是等差数列.
相关知识点
数列
等差数列
等差数列及其通项公式
由递推关系证明数列是等差数列
裂项相消法求和