刷题首页
题库
高中数学
题干
现要制作一个圆锥形漏斗,其母线长为
,要使其体积最大,求高为多少?
上一题
下一题
0.99难度 解答题 更新时间:2018-03-07 08:40:16
答案(点此获取答案解析)
同类题1
已知边长为2的等边三角形
中,
、
分别为
、
边上的点,且
,将
沿
折成
,使平面
平面
,则几何体
的体积的最大值为__________.
同类题2
某房地产商建有三栋楼宇
,三楼宇间的距离都为2千米,拟准备在此三楼宇围成的区域
外建第四栋楼宇
,规划要求楼宇
对楼宇
,
的视角为
,如图所示,假设楼宇大小高度忽略不计.
(1)求四栋楼宇围成的四边形区域
面积的最大值;
(2)当楼宇
与楼宇
,
间距离相等时,拟在楼宇
,
间建休息亭
,在休息亭
和楼宇
,
间分别铺设鹅卵石路
和防腐木路
,如图,已知铺设鹅卵石路、防腐木路的单价分别为
,
(单位:元千米,
为常数).记
,求铺设此鹅卵石路和防腐木路的总费用的最小值.
同类题3
用长14.8 m的钢条制作一个长方体容器的框架,如果所制的底面的一边比另一边长0.5 m,那么容器的最大容积为________m
3
.
同类题4
在正三棱锥
内,有一半球,其底面与正三棱锥的底面重合,且与正正三棱锥的三个侧面都相切,若半球的半径为
,则正三棱锥的体积最小时,其高等于______.
同类题5
现有一块大型的广告宣传版面,其形状是右图所示的直角梯形
.某厂家因产品宣传的需要,拟投资规划出一块区域(图中阴影部分)为产品做广告,形状为直角梯形
(点
在曲线段
上,点
在线段
上).已知
,
,其中曲线段
是以
为顶点,
为对称轴的抛物线的一部分.
(1)建立适当的平面直角坐标系,分别求出曲线段
与线段
的方程;
(2)求该厂家广告区域
的最大面积.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题