刷题首页
题库
高中数学
题干
现有一张长为
,宽为
(
)的长方形铁皮
,准备用它做成一个无盖长方体铁皮容器,要求材料利用率为100%,不考虑焊接处损失.如图,在长方形
的一个角上剪下一块边长为
的正方形铁皮,作为铁皮容器的底面,用余下材料剪拼后作为铁皮容器的侧面,设长方体的高为
,体积为
.
(Ⅰ)求
关于
的函数关系式;
(Ⅱ)求该铁皮容器体积
的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2017-08-18 04:50:38
答案(点此获取答案解析)
同类题1
已知正四棱锥
中,
,那么当该棱锥的体积最大时,它的高为__________.
同类题2
(本小题满分14分)某商场为促销要准备一些正三棱锥形状的装饰品,用半径为
的圆形包装纸包装.要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示.设正三棱锥的底面边长为
,体积为
.
(1)求
关于
的函数关系式;
(2)在所有能用这种包装纸包装的正三棱锥装饰品中,
的最大值是多少?并求此时
的值.
同类题3
如图,已知曲线
与曲线
交于点
.直线
与曲线
分别相交于点
.
(Ⅰ)写出四边形
的面积
与
的函数关系
;
(Ⅱ)讨论
的单调性,并求
的最大值.
同类题4
三棱锥O-ABC中,OA、OB、OC两两垂直,OC=2x,OA=x,OB=y,且x+y=3,则三棱锥O-ABC体积的最大值为()
A.4
B.8
C.
D.
同类题5
已知一块半径为
的残缺的半圆形材料
,
O
为半圆的圆心,
,残缺部分位于过点
的竖直线的右侧.现要在这块材料上截出一个直角三角形,有两种设计方案:如图甲,以
为斜边;如图乙,直角顶点
在线段
上,且另一个顶点
在
上.要使截出的直角三角形的面积最大,应该选择哪一种方案?请说明理由,并求出截得直角三角形面积的最大值.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题