刷题首页
题库
高中数学
题干
设函数
,
.
(Ⅰ)当
时,证明
在
是增函数;
(Ⅱ)若
,
,求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2012-03-23 04:50:31
答案(点此获取答案解析)
同类题1
已知函数
,
.
(1)当
时
,
①求函数
在点
处的切线方程;
②比较
与
的大小
;
(2)当
时,若对
时,
,且
有唯一零点,证明:
.
同类题2
已知函数
,点
,
在曲线
上.
(Ⅰ)讨论函数
的极值情况;
(Ⅱ)若
,比较
与
的大小关系,并说明理由.
同类题3
已知函数
在点
处的切线方程为
.
(1)求
a
,
b
的值;
(2)求证:
.
同类题4
已知函数
,
.
(1)若
在
处取得极值,求
的值;
(2)设
,试讨论函数
的单调性;
(3)当
时,若存在正实数
满足
,求证:
.
同类题5
已知函数
f
(
x
) =
x
e
−
x
(
x
ÎR)
(Ⅰ)求函数
f
(
x
)的单调区间和极值;
(Ⅱ)若
x
Î (0, 1), 求证:
f
(2 −
x
) >
f
(
x
);
(Ⅲ)若
x
1
Î (0, 1),
x
2
Î(1, +∞), 且
f
(
x
1
) =
f
(
x
2
), 求证:
x
1
+
x
2
> 2.
相关知识点
函数与导数
导数及其应用
导数的综合应用
导数在函数中的其他应用
利用导数证明不等式