刷题首页
题库
高中数学
题干
已知函数
的图象在与
轴交点处的切线方程是
.
(I)求函数
的解析式;
(II)设函数
,若
的极值存在,求实数
的取值范围以及函数
取得极值时对应的自变量
的值.
上一题
下一题
0.99难度 解答题 更新时间:2012-03-16 09:25:12
答案(点此获取答案解析)
同类题1
某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用w与其航行速度x的平方成正比(即:w=kx
2
,其中k为比例系数);当航行速度为30海里/小时时,每小时的燃料费用为450元,其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时.
(1)请将从甲地到乙地的运输成本y(元)表示为航行速度x(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?.
同类题2
f(x)是R上的可导函数,且f(x)+ x
>0对x∈R恒成立,则下列恒成立的是( )
A.f(x)>0
B.f(x)<0
C.f(x)>x
D.f(x)<x
同类题3
进价为80元的商品,按90元一个售出时,可卖出400个.已知这种商品每个涨价1元,其销售量就减少20个,则获得利润最大时售价应为( )
A.90元
B.95元
C.100元
D.105元
同类题4
如图,在圆心角为
,半径为
的扇形铁皮上截取一块矩形材料
,其中点
为圆心,点
在圆弧上,点
在两半径上,现将此矩形铁皮
卷成一个以
为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长
,圆柱形铁皮罐的容积为
.
(1)求圆柱形铁皮罐的容积
关于
的函数解析式,并指出该函数的定义域;
(2)当
为何值时,才使做出的圆柱形铁皮罐的容积
最大?最大容积是多少? (圆柱体积公式:
,
为圆柱的底面枳,
为圆柱的高)
同类题5
做一个母线长为
的圆锥形漏斗,当其体积最大时,高应为__________
.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题